说明:高一数学下学期期末试卷及参考答案为的会员投稿推荐,但愿对你的学习工作带来帮助。
不去耕耘,不去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。不要让追求之舟停泊在幻想的港湾,而应扬起奋斗的风帆,驶向现实生活的大海。下面好范文小编为你带来一些关于高一下学期期末试卷,希望对大家有所帮助。
一、选择题:(共15个小题,每小题4分,共60分.在每个小题给出的四个选项中,只有一项是符合要求的)
1.已知全集U=R,A=,B={-|ln-<0},则A∪B=()
A.{-|﹣1≤-≤2}B.{-|﹣1≤-<2}C.{-|-
2.已知,那么cosα=()
A.B.C.D.
3.已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足=+,则的值为()
A.B.C.1D.2
4.△ABC中,AB=2,AC=3,∠B=60°,则cosC=()
A.B.C.D.
5.已知△ABC是边长为1的等边三角形,则(﹣2)?(3﹣4)=()
A.﹣B.﹣C.﹣6﹣D.﹣6+
6.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()
A.63B.45C.36D.27
7.已知角α是第二象限角,且|cos|=﹣cos,则角是()
A.第一象限角B.第二象限角C.第三象限角D.第四象限角
8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()
A.5B.4C.3D.2
9.对任意一个确定的二面角α﹣l﹣β,a和b是空间的两条异面直线,在下面给出的四个条件中,能使a和b所成的角也确定的是()
A.a∥a且b∥βB.a∥a且b⊥βC.a?α且b⊥βD.a⊥α且b⊥β
10.定义2×2矩阵=a1a4﹣a2a3,若f(-)=,则f(-)的图象向右平移个单位得到函数g(-),则函数g(-)解析式为()
A.g(-)=﹣2cos2-B.g(-)=﹣2sin2-
C.D.
11.已知一个几何体的三视图如图所示,则该几何体的体积为()
A.7B.7C.7D.8
12.若sin(π+α)=,α是第三象限的角,则=()
A.B.C.2D.﹣2
13.已知,记数列{an}的前n项和为Sn,则使Sn>0的n的最小值为()
A.10B.11C.12D.13
14.(1+tan18°)(1+tan27°)的值是()
A.B.
C.2D.2(tan18°+tan27°)
15.数列{an}满足:且{an}是递增数列,则实数a的范围是()
A.B.C.(1,3)D.(2,3)
二、填空题(共5小题,每小题4分,共20分,将答案填在答题纸上)
16.已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C三点共线,则k=.
17.已知向量、满足||=1,||=1,与的夹角为60°,则|+2|=.
18.在△ABC中,BD为∠ABC的平分线,AB=3,BC=2,AC=,则sin∠ABD等于.
19.在四棱锥S﹣ABCD中,SA⊥面ABCD,若四边形ABCD为边长为2的正方形,SA=3,则此四棱锥外接球的表面积为.
20.设数列{an}的通项为an=2n﹣7(n∈N-),则|a1|+|a2|+…+|a15|=.
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
21.已知平面向量=(1,-),=(2-+3,﹣-)(-∈R).
(1)若∥,求|﹣|
(2)若与夹角为锐角,求-的取值范围.
22.(文科)已知{an}是单调递增的等差数列,首项a1=3,前n项和为Sn,数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.
(Ⅰ)求{an}和{bn}的通项公式.
(Ⅱ)令Cn=nbn(n∈N+),求{cn}的前n项和Tn.
23.在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣.
(Ⅰ)求cosA的值;
(Ⅱ)若a=4,b=5,求向量在方向上的投影.
24.已知如图:四边形ABCD是矩形,BC⊥平面ABE,且AE=2,EB=BC=2,点F为CE上一点,且BF⊥平面ACE.
(1)求证:AE∥平面BFD;
(2)求三棱锥A﹣DBE的体积;
(3)求二面角D﹣BE﹣A的大小.
25.如图,函数f(-)=Asin(ω-+φ)(其中A>0,ω>0,|φ|≤)的图象与坐标轴的三个交点为P,Q,R,且P(1,0),Q(m,0)(m>0),∠PQR=,M为QR的中点,|PM|=.
(Ⅰ)求m的值及f(-)的解析式;
(Ⅱ)设∠PRQ=θ,求tanθ.
26.设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.
(Ⅰ)求证:{lgan}是等差数列;
(Ⅱ)设Tn是数列{}的前n项和,求Tn;
(Ⅲ)求使Tn>(m2﹣5m)对所有的n∈N-恒成立的整数m的取值集合
一、选择题:(共15个小题,每小题4分,共60分.在每个小题给出的四个选项中,只有一项是符合要求的)
1.已知全集U=R,A=,B={-|ln-<0},则A∪B=()
A.{-|﹣1≤-≤2}B.{-|﹣1≤-<2}C.{-|-
【考点】并集及其运算.
【分析】求出A与B中不等式的解集,分别确定出A与B,找出两集合的并集即可.
【解答】解:由A中不等式变形得:≤0,即(-+1)(-﹣2)<0,且-﹣2≠0,
解得:﹣1≤-<2,即A={-|﹣1≤-<2},
由B中不等式变形得:ln-<0=ln1,得到0
则A∪B={-|﹣1≤-<2},
故选:B.
2.已知,那么cosα=()
A.B.C.D.
【考点】诱导公式的作用.
【分析】已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.
【解答】解:sin(+α)=sin(2π++α)=sin(+α)=cosα=.
故选C.
3.已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足=+,则的值为()
A.B.C.1D.2
【考点】平面向量的基本定理及其意义.
【分析】如图所示,由于=+,可得:PA是平行四边形PBAC的对角线,PA与BC的交点即为BC的中点D.即可得出.
【解答】解:如图所示,
∵=+,
∴PA是平行四边形PBAC的对角线,PA与BC的交点即为BC的中点D.∴=1.
故选:C.
4.△ABC中,AB=2,AC=3,∠B=60°,则cosC=()
A.B.C.D.
【考点】正弦定理.
【分析】由已知及正弦定理可得sinC==,又AB
【解答】解:∵AB=2,AC=3,∠B=60°,
∴由正弦定理可得:sinC===,
又∵AB
∴cosC==.
故选:D.
5.已知△ABC是边长为1的等边三角形,则(﹣2)?(3﹣4)=()
A.﹣B.﹣C.﹣6﹣D.﹣6+
【考点】平面向量数量积的运算.
【分析】将式子展开计算.
【解答】解:(﹣2)?(3﹣4)=3﹣4﹣6+8
=3×1×1×cos120°﹣4×1×1×cos60°﹣6×12+8×1×1×cos60°
=﹣﹣2﹣6+4
=﹣.
故选:B.
6.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()
A.63B.45C.36D.27
【考点】等差数列的性质.
【分析】观察下标间的关系,知应用等差数列的性质求得.
【解答】解:由等差数列性质知S3、S6﹣S3、S9﹣S6成等差数列,即9,27,S9﹣S6成等差,∴S9﹣S6=45
∴a7+a8+a9=45
故选B.
7.已知角α是第二象限角,且|cos|=﹣cos,则角是()
A.第一象限角B.第二象限角C.第三象限角D.第四象限角
【考点】三角函数值的符号.
【分析】根据α的范围判断出的范围,再由含有绝对值的式子得到角的余弦值的符号,根据“一全正二正弦三正切四余弦”再进一步判断的范围.
【解答】解:由α是第二象限角知,是第一或第三象限角.
又∵|cos|=﹣cos,∴cos<0,
∴是第三象限角.
故选C.
8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()
A.5B.4C.3D.2
【考点】等差数列的通项公式.
【分析】写出数列的第一、三、五、七、九项的和即5a1+(2d+4d+6d+8d),写出数列的第二、四、六、八、十项的和即5a1+(d+3d+5d+7d+9d),都用首项和公差表示,两式相减,得到结果.
【解答】解:,
故选C.
9.对任意一个确定的二面角α﹣l﹣β,a和b是空间的两条异面直线,在下面给出的四个条件中,能使a和b所成的角也确定的是()
A.a∥a且b∥βB.a∥a且b⊥βC.a?α且b⊥βD.a⊥α且b⊥β
【考点】异面直线及其所成的角.
【分析】作辅助线,利用二面角的定义和线线角的定义证明两角互补即可.
【解答】解:如图,若a⊥α且b⊥β,
过A分别作直线a、b的平行线,交两平面α、β分别为C、B
设平面ABC与棱l交点为O,连接BO、CO,
易知四边形ABOC为平面四边形,可得∠BOC与∠BAC互补
∵α﹣l﹣β是大小确定的一个二面角,而∠BOC就是它的平面角,
∴∠BOC是定值,∴∠BAC也是定值,
即a,b所成的角为定值.
故选D
10.定义2×2矩阵=a1a4﹣a2a3,若f(-)=,则f(-)的图象向右平移个单位得到函数g(-),则函数g(-)解析式为()
A.g(-)=﹣2cos2-B.g(-)=﹣2sin2-
C.D.
【考点】函数y=Asin(ω-+φ)的图象变换;三角函数中的恒等变换应用.
【分析】利用三角恒等变换化简函数f(-)的解析式,再利用函数y=Asin(ω-+φ)的图象变换规律,求得函数g(-)解析式.
【解答】解:由题意可得f(-)==cos2-﹣sin2-﹣cos(+2-)
=cos2-+sin2-=2cos(2-﹣),
则f(-)的图象向右平移个单位得到函数g(-)=2cos[2(-﹣)﹣]=2cos(2-﹣π)=﹣2cos2-,
故选:A.
11.已知一个几何体的三视图如图所示,则该几何体的体积为()
A.7B.7C.7D.8
【考点】由三视图求面积、体积.
【分析】根据几何体的三视图知,该几何体是棱长为2的正方体,去掉两个三棱锥剩余的部分,结合图中数据即可求出它的体积.
【解答】解:根据几何体的三视图知,该几何体是棱长为2的正方体,去掉两个三棱锥剩余的部分,
如图所示;
所以该几何体的体积为
V=V正方体﹣﹣
=23﹣-12×2﹣-1×2×2
=7.
故选:A.
12.若sin(π+α)=,α是第三象限的角,则=()
A.B.C.2D.﹣2
【考点】运用诱导公式化简求值.
【分析】已知等式利用诱导公式化简求出sinα的值,根据α为第三象限角,利用同角三角函数间基本关系求出cosα的值,原式利用诱导公式化简,整理后将各自的值代入计算即可求出值.
【解答】解:∵sin(π+α)=﹣sinα=,即sinα=﹣,α是第三象限的角,
∴cosα=﹣,
则原式====﹣,
故选:B.
13.已知,记数列{an}的前n项和为Sn,则使Sn>0的n的最小值为()
A.10B.11C.12D.13
【考点】数列的求和.
【分析】由,可得a1+a10=a2+a9=…=a5+a6=0,a11>0,则有S9<0,S10=0,S11>0可求
【解答】解:由,
可得a1+a10=a2+a9=…=a5+a6=0,a11>0
∴S9<0,S10=0,S11>0
使Sn>0的n的最小值为11
故选:B
14.(1+tan18°)(1+tan27°)的值是()
A.B.
C.2D.2(tan18°+tan27°)
【考点】两角和与差的正切函数.
【分析】要求的式子即1+tan18°+tan27°+tan18°tan27°,再把tan18°+tan27°=tan45°(1﹣tan18°tan27°)代入,化简可得结果.
【解答】解:(1+tan18°)(1+tan27°)=1+tan18°+tan27°+tan18°tan27°=1+tan45°(1﹣tan18°tan27°)+tan18°tan27°=2,
故选C.
15.数列{an}满足:且{an}是递增数列,则实数a的范围是()
A.B.C.(1,3)D.(2,3)
【考点】数列的函数特性;分段函数的解析式求法及其图象的作法;函数单调性的判断与证明.
【分析】根据题意,首先可得an通项公式,这是一个类似与分段函数的通项,结合分段函数的单调性的判断方法,可得;解可得答案.
【解答】解:根据题意,an=f(n)=;
要使{an}是递增数列,必有;
解可得,2
故选D.
二、填空题(共5小题,每小题4分,共20分,将答案填在答题纸上)
16.已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C三点共线,则k=.
【考点】平面向量共线(平行)的坐标表示;三点共线.
【分析】利用三点共线得到以三点中的一点为起点,另两点为终点的两个向量平行,利用向量平行的坐标形式的充要条件列出方程求出k.
【解答】解:向量,
∴
又A、B、C三点共线
故(4﹣k,﹣7)=λ(﹣2k,﹣2)
∴k=
故答案为
17.已知向量、满足||=1,||=1,与的夹角为60°,则|+2|=.
【考点】平面向量数量积的运算.
【分析】根据条件进行数量积的计算便可得出,从而便可求出,这样即可求出的值.
【解答】解:根据条件,;
∴;
∴.
故答案为:.
18.在△ABC中,BD为∠ABC的平分线,AB=3,BC=2,AC=,则sin∠ABD等于.
【考点】正弦定理.
【分析】利用余弦定理求得cos∠ABC=cos2θ的值,可得θ的值.
【解答】解:∵△ABC中,BD为∠ABC的平分线,AB=3,BC=2,AC=,
设∠ABD=θ,则∠ABC=2θ,
由余弦定理可得cos2θ===,
∴2θ=,∴θ=,
故答案为:.
19.在四棱锥S﹣ABCD中,SA⊥面ABCD,若四边形ABCD为边长为2的正方形,SA=3,则此四棱锥外接球的表面积为17π.
【考点】球内接多面体.
【分析】如图所示,连接AC,BD相交于点O1.取SC的中点,连接OO1.利用三角形的中位线定理可得OO1∥SA.由于SA⊥底面ABCD,可得OO1⊥底面ABCD.可得点O是四棱锥S﹣ABCD外接球的球心,SC是外接球的直径.
【解答】解:如图所示
连接AC,BD相交于点O1.取SC的中点,连接OO1.
则OO1∥SA.
∵SA⊥底面ABCD,
∴OO1⊥底面ABCD.
可得点O是四棱锥S﹣ABCD外接球的球心.
因此SC是外接球的直径.
∵SC2=SA2+AC2=9+8=17,∴4R2=17,
∴四棱锥P﹣ABCD外接球的表面积为4πR2=π?17=17π.
故答案为:17π
20.设数列{an}的通项为an=2n﹣7(n∈N-),则|a1|+|a2|+…+|a15|=153.
【考点】等差数列的前n项和.
【分析】先根据数列的通项公式大于等于0列出关于n的不等式,求出不等式的解集即可得到数列的前三项为负数,利用负数的绝对值等于它的相反数,求出前三项的绝对值,正数的绝对值等于本身把第四项及后面的各项化简,然后利用等差数列的前n项和的公式即可求出所求式子的值.
【解答】解:由an=2n﹣7≥0,解得n≥,所以数列的前3项为负数,
则|a1|+|a2|+…+|a15|
=5+3+1+1+3+5+…+23
=9+12×1+×2
=153.
故答案为:153
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
21.已知平面向量=(1,-),=(2-+3,﹣-)(-∈R).
(1)若∥,求|﹣|
(2)若与夹角为锐角,求-的取值范围.
【考点】平面向量数量积的运算;平面向量共线(平行)的坐标表示.
【分析】(1)根据向量平行与坐标的关系列方程解出-,得出的坐标,再计算的坐标,再计算||;
(2)令得出-的范围,再去掉同向的情况即可.
【解答】解:(1)∵,∴﹣-﹣-(2-+3)=0,解得-=0或-=﹣2.
当-=0时,=(1,0),=(3,0),∴=(﹣2,0),∴||=2.
当-=﹣2时,=(1,﹣2),=(﹣1,2),∴=(2,﹣4),∴||=2.
综上,||=2或2.
(2)∵与夹角为锐角,∴,
∴2-+3﹣-2>0,解得﹣1
又当-=0时,,
∴-的取值范围是(﹣1,0)∪(0,3).
22.(文科)已知{an}是单调递增的等差数列,首项a1=3,前n项和为Sn,数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.
(Ⅰ)求{an}和{bn}的通项公式.
(Ⅱ)令Cn=nbn(n∈N+),求{cn}的前n项和Tn.
【考点】等差数列与等比数列的综合;数列的求和.
【分析】(Ⅰ)设公差为d,公比为q,则a2b2=(3+d)q=12①,S3+b2=3a2+b2=3(3+d)+q=20②
联立①②结合d>0可求d,q,利用等差数列,等比数列的通项公式可求an,bn
(Ⅱ)由(I)可得,bn=2n﹣1,cn=n?2n﹣1,考虑利用错位相减求解数列的和即可
【解答】解:(Ⅰ)设公差为d,公比为q,
则a2b2=(3+d)q=12①
S3+b2=3a2+b2=3(3+d)+q=20②
联立①②可得,(3d+7)(d﹣3)=0
∵{an}是单调递增的等差数列,d>0.
则d=3,q=2,
∴an=3+(n﹣1)×3=3n,bn=2n﹣1…
(Ⅱ)bn=2n﹣1,cn=n?2n﹣1,
∴Tn=c1+c2+…+cnTn=1?20+2?21+3?22+…+n?2n﹣12Tn=1?21+2?22+…+(n﹣1)?2n﹣1+n?2n…
两式相减可得,﹣Tn=1?20+1?21+1?22+…+1?2n﹣1﹣n?2n∴﹣Tn==2n﹣1﹣n?2n
∴Tn=(n﹣1)?2n+1…
23.在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣.
(Ⅰ)求cosA的值;
(Ⅱ)若a=4,b=5,求向量在方向上的投影.
【考点】两角和与差的余弦函数;向量数乘的运算及其几何意义;二倍角的正弦;二倍角的余弦;余弦定理.
【分析】(Ⅰ)由已知条件利用三角形的内角和以及两角差的余弦函数,求出A的余弦值,然后求sinA的值;
(Ⅱ)利用,b=5,结合正弦定理,求出B的正弦函数,求出B的值,利用余弦定理求出c的大小.
【解答】解:(Ⅰ)由
可得,
可得,
即,
即,
(Ⅱ)由正弦定理,,所以=,
由题意可知a>b,即A>B,所以B=,
由余弦定理可知.
解得c=1,c=﹣7(舍去).
向量在方向上的投影:=ccosB=.
24.已知如图:四边形ABCD是矩形,BC⊥平面ABE,且AE=2,EB=BC=2,点F为CE上一点,且BF⊥平面ACE.
(1)求证:AE∥平面BFD;
(2)求三棱锥A﹣DBE的体积;
(3)求二面角D﹣BE﹣A的大小.
【考点】二面角的平面角及求法;棱柱、棱锥、棱台的体积;直线与平面平行的判定.
【分析】(1)连接AC交BD于G,连结GF,则G为AC的中点,推导出BF⊥CE,FG为△ACE的中位线,由此能证明AE∥平面BFD.
(2)推导出BF⊥AE,BC⊥AE,AD⊥平面ABE,从而AE⊥BE,由VA﹣DBE=VD﹣ABE,能求出三棱锥A﹣DBE的体积.
(3)由AE⊥BE,AD⊥BE,得到∠DEA是二面角D﹣BE﹣A的平面角,由此能求出二面角D﹣BE﹣A的大小.
【解答】证明:(1)连接AC交BD于G,连结GF,
∵ABCD是矩形,∴G为AC的中点,…1分
由BF⊥平面ACE得:BF⊥CE,
由EB=BC知:点F为CE中点,…2分
∴FG为△ACE的中位线,
∴FG∥AE,…3分
∵AE?平面BFD,FG?平面BFD,
∴AE∥平面BFD.…4分
解:(2)由BF⊥平面ACE得:BF⊥AE,
由BC⊥平面ABE及BC∥AD,得:BC⊥AE,AD⊥平面ABE,
∵BC∩BF=F,∴AE⊥平面BCE,则AE⊥BE,…6分
∴VA﹣DBE=VD﹣ABE=,
即三棱锥A﹣DBE的体积为.…8分
(3)由(2)知:AE⊥BE,AD⊥BE,
∴BE⊥平面ADE,则BE⊥DE,
∴∠DEA是二面角D﹣BE﹣A的平面角,…10分
在Rt△ADE中,DE==4,
∴AD=DE,则∠DEA=30°,
∴二面角D﹣BE﹣A的大小为30°.…12分.
25.如图,函数f(-)=Asin(ω-+φ)(其中A>0,ω>0,|φ|≤)的图象与坐标轴的三个交点为P,Q,R,且P(1,0),Q(m,0)(m>0),∠PQR=,M为QR的中点,|PM|=.
(Ⅰ)求m的值及f(-)的解析式;
(Ⅱ)设∠PRQ=θ,求tanθ.
【考点】由y=Asin(ω-+φ)的部分图象确定其解析式;同角三角函数间的基本关系.
【分析】(Ⅰ)由已知可得=,从而解得m的值,由图象可求T,由周期公式可求ω,把p(1,0)代入f(-),结合|φ|≤,即可求得φ的值,把R(0,﹣4)代入f(-)=Asin(-﹣),即可解得A的值,从而可求f(-)的解析式.
(Ⅱ)由∠ORP=﹣θ,tan∠ORP=,根据tan(﹣θ)=即可解得tanθ的值.
【解答】解:(Ⅰ)∵∠PQR=,∴OQ=OR,∵Q(m,0),∴R(0,﹣m),…
又M为QR的中点,∴M(,﹣),又|PM|=,
=,m2﹣2m﹣8=0,m=4,m=﹣2(舍去),…
∴R(0,4),Q(4,0),=3,T=6,=6,,…
把p(1,0)代入f(-)=Asin(-+φ),Asin(+φ)=0,
∵|φ|≤,∴φ=﹣.…
把R(0,﹣4)代入f(-)=Asin(-﹣),Asin(﹣)=﹣4,A=.…
f(-)的解析式为f(-)=sin(-﹣).
所以m的值为4,f(-)的解析式为f(-)=sin(-﹣).…
(Ⅱ)在△OPR中,∠ORP=﹣θ,tan∠ORP=,
∴tan(﹣θ)=,…
∴=,解得tanθ=.…
26.设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.
(Ⅰ)求证:{lgan}是等差数列;
(Ⅱ)设Tn是数列{}的前n项和,求Tn;
(Ⅲ)求使Tn>(m2﹣5m)对所有的n∈N-恒成立的整数m的取值集合.
【考点】数列的求和;等差关系的确定.
【分析】(I)根据等差数列的定义即可证明{lgan}是等差数列;
(Ⅱ)求出{}的通项公式,利用裂项法即可求Tn;
(Ⅲ)直接解不等式即可得到结论.
【解答】解:(I)∵a1=10,an+1=9Sn+10.
∴当n=1时,a2=9a1+10=100,
故,
当n≥1时,an+1=9Sn+10①,
an+2=9Sn+1+10②,
两式相减得an+2﹣an+1=9an+1,
即an+2=10an+1,
即,
即{an}是首项a1=10,公比q=10的等比数列,
则数列{an}的通项公式;
则lgan=lg10n=n,
则lgan﹣lgan﹣1=n﹣(n﹣1)=1,为常数,
即{lgan}是等差数列;
(Ⅱ)∵lgan=n,则=(﹣),
则Tn=3(1﹣+…+﹣)=3(1﹣)=3﹣,
(Ⅲ)∵Tn=3﹣≥T1=,
∴要使Tn>(m2﹣5m)对所有的n∈N-恒成立,
则>(m2﹣5m)对所有的n∈N-恒成立,
解得﹣1
故整数m的取值集合{0,1,2,3,4,5}.
你也可以在搜索更多本站小编为你整理的其他高一数学下学期期末试卷及参考答案范文。
文档为doc格式